# Memphis Metropolitan-Stormwater North DeSoto County, Mississippi Feasibility Study



# Appendix E. Life Safety February 2023

# Contents

| 1.             | Life Safety Risk Assessment                                                                                                                                | 3  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.             | 2. Project Summary - Current Level of Design                                                                                                               | 4  |
| 3.             | 3. Consequences                                                                                                                                            | 5  |
|                | 3.1. Population at Risk                                                                                                                                    | 6  |
|                | 3.2. Life Loss Model Parameters                                                                                                                            | 8  |
|                | Relative Hazard Identification                                                                                                                             | 8  |
|                | Hazard Communication Delay                                                                                                                                 | 9  |
|                | Warning Issuance Delay                                                                                                                                     | 9  |
|                | Warning Diffusion (First Alert)                                                                                                                            | 9  |
|                | Protective Action Initiation                                                                                                                               | 12 |
|                | 3.3. Life Loss                                                                                                                                             | 12 |
|                | Existing Without-Project Condition                                                                                                                         | 12 |
|                | With Drainst Condition New Dranch Conneria                                                                                                                 |    |
|                | with-Project Condition – Non-Breach Scenario                                                                                                               | 14 |
|                | With-Project Condition – Non-Breach Scenario                                                                                                               |    |
|                | With-Project Condition – Non-Breach Scenario<br>With-Project Condition – Breach Scenario<br>3.4. Incremental Life Loss                                     |    |
|                | With-Project Condition – Non-Breach Scenario<br>With-Project Condition – Breach Scenario<br>3.4. Incremental Life Loss<br>Minimal Warning                  |    |
|                | With-Project Condition – Non-Breach Scenario<br>With-Project Condition – Breach Scenario<br>3.4. Incremental Life Loss<br>Minimal Warning<br>Ample Warning |    |
|                | <ul> <li>With-Project Condition – Non-Breach Scenario</li> <li>With-Project Condition – Breach Scenario</li></ul>                                          |    |
|                | <ul> <li>With-Project Condition – Non-Breach Scenario</li> <li>With-Project Condition – Breach Scenario</li></ul>                                          |    |
| 4.             | <ul> <li>With-Project Condition – Non-Breach Scenario</li> <li>With-Project Condition – Breach Scenario</li></ul>                                          |    |
| 4.             | <ul> <li>With-Project Condition – Non-Breach Scenario</li></ul>                                                                                            |    |
| 4.             | <ul> <li>With-Project Condition – Non-Breach Scenario</li></ul>                                                                                            |    |
| 4.             | <ul> <li>With-Project Condition – Non-Breach Scenario</li></ul>                                                                                            |    |
| 4.             | <ul> <li>With-Project Condition – Non-Breach Scenario</li></ul>                                                                                            |    |
| 4.<br>5.<br>6. | <ul> <li>With-Project Condition – Non-Breach Scenario</li></ul>                                                                                            |    |

# List of Figures

| Figure 1: PCSWMM Geometry for the River Des Peres Watershed                              | 4  |
|------------------------------------------------------------------------------------------|----|
| Figure 2: Example Design Cross Section from PLAN 8.                                      | 5  |
| Figure 3. Example Breach Warning and Response Timeline                                   | 8  |
| Figure 4. Warning Issuance Delay                                                         | 9  |
| Figure 5. Warning Diffusion Curves for Daytime and Night-Time First Alert.               | 11 |
| Figure 6. Protective Action (PAI) Curve                                                  | 12 |
| Figure 7. Life Loss with Minimal Warning in the Existing Condition                       | 13 |
| Figure 8. Life Loss with Ample Warning in the Existing Condition                         | 14 |
| Figure 9. Life Loss with Minimal Warning, With Project, Non-Breach                       | 15 |
| Figure 10. Life Loss with Ample Warning, With Project, Non-Breach.                       | 15 |
| Figure 11: Life Loss with Minimal Warning, With Project, Breach Scenario.                | 17 |
| Figure 12. Life Loss with Ample Warning, With Project, Breach Scenario.                  | 15 |
| Figure 13: River Des Peres - Detention Basin 4 proposed geometry                         | 21 |
| Figure 14: 1%, 0.5%, and 0.2% (1/100-, 200-, and 500-year) flood profiles                | 22 |
| Figure 15: Hydrograph for the 1%, 0.5%, and 0.2% (100-, 200-, and 500-year) flood at the |    |
| upstream end                                                                             | 23 |

# List of Tables

| 6  |
|----|
| 7  |
| 8  |
| 13 |
| 11 |
| 14 |
| 13 |
| 16 |
| 15 |
| 16 |
| 16 |
| 19 |
| 19 |
| 20 |
| 25 |
|    |

## 1. Life Safety Risk Assessment

The United States Army Corps of Engineers (USACE) recognizes that risks to human life are a fundamental component of all flood risk management studies and must receive explicit consideration in the planning process. Current USACE guidance (PCB 2019-4, ECB 2019-03, ECB 2019-15, and the January 2021 Policy Directive – Comprehensive Documentation of Benefits in Decision Documents) on risk assessments in planning studies specifies how studies should be performed on new or existing dams and levees. This risk assessment's purpose is to make sure that the feasibility level designs follow the four Tolerable Risk Guidelines:

- a. TRG 1 Understanding the Risk
- b. TRG 2 Building Risk Awareness
- c. TRG 3 Fulfilling Daily Responsibilities
- d. TRG 4 Actions to Reduce Risk

While all these guidelines are important, TRGs 1 and 4 are critical to Planning studies. The risk assessment below is the first step to Understanding the Risk (TRG 1) of the proposed features and makes recommendations on changes that could Reduce the Risk (TRG 4).

An additional benefit of the risk assessment is the identification of areas of concern in the proposed design that may require extra attention during design or changes to design to ensure minimal risk to the public.

For this study, the life safety risk consideration was accomplished by performing an abbreviated Life Safety Consequence Assessment and a feasibility screening level Potential Failure Mode Analysis.

As part of this life safety analysis the primary alternative being evaluated is a leveefloodwall feature (Plan 8). The integrated feasibility report and environmental impact statement (IFR-EIS) covers the other alternatives and provides the context for this specific aspect of the study. The consequence evaluation deals with both the with and without project condition for the Plan 8 alternative as well as delves into the breach and non-breach scenarios for the with project condition.

### 2. Project Summary - Current Level of Design



Figure 1: Plan 8 Levee Floodwall Alignment, DeSoto County, Mississippi. Yellow feature is levee and the turquoise feature is the floodwall. Horn Lake Creek flows from Southeast to the Northwest across Goodman Road and Hwy. 51.

The main body of the IFR-EIS covers in greater detail how USACE and the Non-Federal sponsor have arrived at evaluating the Plan 8 alternative and provides greater context for the alternative formulation and final arrays that have been developed.

The IFR-EIS includes a regional level understanding of the geology, with the near surface soils based on US Department of Agriculture – Natural Resource Conservation Survey (USDA – NRCS) soils survey maps. Figure 1 shows the alignment of Plan 8. Design is currently at the conceptual level at approximately 5 - 10% level of completion with plan view CADD alignments and crude typical cross-sections sufficient to estimate ROM quantities. Figure 2 shows an example of actual sections of the design that exemplify the infancy of the design.



Figure 2: Example Design Cross Section from Plan 8.

### 3. Consequences

For the tentatively selected plan that has the construction of Plan 8 as the structural option, the worst-case breach condition was examined using HEC-RAS version 5.0.7. The worst-case condition hydraulically would be if a breach occurred due to piping at a location formed 1500 feet from the southernmost end of the levee. This location is inline with an existing ditch that will be cutoff by the levee and provides the lowest elevation for water to begin touching the levee and a likely location for piping to naturally form.

Horn Lake Creek is susceptible to high flow flashy storm events as well as prolonged high stages during wetter months of the year. Because of this both overtopping and piping breach scenarios were considered. In regard to the breach characteristics, degradation progression would have normally been used, but because of the typical flooding mechanism being short duration intense storms the levee would not adequately degrade. For this analysis, a complete blow-out breach with a width of 200 ft was simulated yielding the worst possibility of failure. Table 1 tabulates the results of the breach analysis as compared to the with and without project conditions.

| AEP  | Water Surfa | ce Elevation NA<br>XS 20402.2  | Proposed Plan 8Difference   |                             |                           |
|------|-------------|--------------------------------|-----------------------------|-----------------------------|---------------------------|
|      | Existing    | Proposed Plan<br>8 Alternative | Proposed Plan<br>8 Breached | Difference<br>with Existing | Difference<br>with Breach |
| 0.2% | 267.5       | 262.5                          | 266.2                       | 5.0                         | 1.3                       |

Table 1 Water Surface Elevations Downstream of PLAN 8

#### 3.1. Breach Assumptions

There were performed two different breach scenario failure modes on the levee, piping and overtopping, for the 0.2% Annual Exceedance Probability (AEP) event. Breach locations for each failure mode were analyzed at locations along the centerline of the proposed levee at 800, 1500, and 1800 feet measured from the southernmost point of the proposed levee. The piping breach was initiated at a headwater surface elevation of 274.2. The overtopping breach initiated at a headwater surface elevation of 275.2.

#### 3.2. EPZ

Figure 3. shows the Emergency Planning Zone (EPZ) for the North Desoto LifeSim model. The EPZ includes the population at risk of flooding if the proposed levee failed.



Figure 3. North Desoto EPZ

#### 3.3. Population at Risk

Population at risk (PAR) is defined as the number of people within an affected area that would be subject to inundation during a flood hazard event. Estimates of PAR were generated using the National Structure Inventory 2.0 (NSI 2.0) for breach and nonbreach inundation scenarios, as well as the existing without-project condition. The NSI 2.0 population data was developed in 2018 for both day and night population. The US Census Bureau estimates there has been no change in population in Desoto County. The estimated PAR by event is summarized in Table 2.

The PAR in this study area is largely residential with some small pockets of nonresidential areas. The resident's awareness of their flood risk is unknown. Because the study is majority residential, the nighttime PAR is greater than the daytime PAR.

Table 2. Population and Structures at Risk.

| Population and Structures at Risk |                 |                         |         |                 |            |              |  |  |  |
|-----------------------------------|-----------------|-------------------------|---------|-----------------|------------|--------------|--|--|--|
|                                   |                 |                         | Minimal | Minimal Warning |            | Warning      |  |  |  |
| Scenario                          | AEP Event       | Structures<br>Inundated | PAR Day | PAR<br>Night    | PAR<br>Day | PAR<br>Night |  |  |  |
| Without-                          | Without- 1FT OT |                         | 2031    | 2763            | 2031       | 2755         |  |  |  |
| Project                           | 75% Loading     | 602                     | 1080    | 2107            | 1081       | 2097         |  |  |  |
|                                   | 50% Loading     | 225                     | 405     | 630             | 405        | 629          |  |  |  |
| Breach                            | 1FT OT          | 811                     | 2067    | 2769            | 2031       | 2755         |  |  |  |
|                                   | 75% Loading     | 614                     | 1167    | 2115            | 1081       | 2097         |  |  |  |
|                                   | 50% Loading     | 71                      | 133     | 211             | 133        | 211          |  |  |  |
| Non-Breach                        | 1FT OT          | 808                     | 2031    | 2762            | 2067       | 2764         |  |  |  |
|                                   | 75% Loading     | 602                     | 1080    | 2107            | 1168       | 2106         |  |  |  |
|                                   | 50% Loading     | 71                      | 133     | 211             | 133        | 211          |  |  |  |

#### 3.2. Life Loss Model Parameters

The consequence modeling was conducted with the Loss of Life Simulation software, LifeSim 2.0.1. To determine the percentage of population at risk (PAR) within a structure that is warned and mobilized over time, several parameters are used to estimate the probable values of warning and mobilization percentages as time passes. These include when warnings will be issued (hazard identification and communication delay), how long they will take to become effective (warning issuance and warning diffusion), and the rate at which PAR will mobilize in response (mobilization). Figure shows an example breach warning and response timeline.



Figure 4. Example Breach Warning and Response Timeline.

#### **Relative Hazard Identification**

The Hazard Identification time is the time at which a hazard is identified (levee breach or major flooding) relative to when it occurs (actual breach time). The standard operating procedures from the USACE Mapping, Modeling and Consequence (MMC) production center uses two different warning scenarios with different distributions of hazard identification time: minimal warning and ample warning. Minimal warning scenarios have the hazard identification relative time set as a uniform distribution between 3 hours prior to the event and half an hour after the event occurs. Ample warning scenarios have the hazard identification relative time set as 24 hours prior to the event. The Relative Hazard Identification Times used for this study are summarized in Table 3.

Table 3. Relative Hazard Identification Times.

| Warning Scenario | Distribution Type | Minimum (hours) | Maximum (hours) |
|------------------|-------------------|-----------------|-----------------|
| Minimal          | Uniform           | -2              | 0               |
| Ample            | Uniform           | -2              | 24              |

#### **Hazard Communication Delay**

The Hazard Communication Delay is the time that it would take from when the hazard is identified to when the emergency planning zone (EPZ) representatives is notified. For example, if a breach occurs when no one is observing the project then the emergency managers would be notified after the hazard is identified. The hazard communication delay is set as a uniform distribution between 0.01 hours and 0.5 hours.

#### Warning Issuance Delay

The Warning Issuance Delay is the time it takes from when the emergency managers receive the notification of the imminent hazard to when they issue the first evacuation order to the public.

For this model, Preparedness Unknown was selected from among LifeSim's preset distributions for Warning Issuance Delay. In the absence of a Mileti & Sorenson interview, the distribution with the greatest uncertainty was chosen. This means the time it takes the emergency managers to issue the first evacuation order is most likely within 30 minutes of receiving the notification of an imminent hazard from the official monitoring storm activity. The Preparedness Unknown curve is shown in Figure .



Figure 5. Warning Issuance Delay.

#### Warning Diffusion (First Alert)

Warning diffusion is the time between a first alert or warning issuance and the time that PAR receive that warning. It is primarily dependent on what type of warning systems and procedures are in place and the ability of the population to receive the warning via those systems. The warning diffusion curve represents the efficiency of a warning after it is issued.

The Warning Diffusion curves in Figure, set to LifeSim's Unknown/Unknown preset due to the absence of a Mileti & Sorenson Interview, provide a distribution for warning dissemination at 2am and 2pm. The daytime diffusion curve represents the percentage

of the population which will receive a first alert warning over time during daytime hours after the warning is issued. The nighttime diffusion curve represents the percentage of the population which will receive a first alert warning over time during nighttime hours after the warning is issued.

| Time<br>(Minutes) | Minimum %<br>Warned | Maximum %<br>Warned |   |
|-------------------|---------------------|---------------------|---|
| 0                 | 0                   | 0                   | ^ |
| 10                | 0.28                | 73.75               | ] |
| 20                | 1.21                | 90.199997           |   |
| 30                | 3.06                | 96.32               |   |
| 40                | 6.19                | 98.68               |   |
| 50                | 10.96               | 99.540001           |   |
| 60                | 17.700001           | 99.839996           |   |
| 70                | 26.49               | 99.940002           |   |
| 80                | 37.060001           | 99.980003           |   |
| 90                | 48.639999           | 99.989998           |   |
| 100               | 60.130001           | 100                 |   |
| 110               | 70.489998           | 100                 |   |
| 120               | 79.040001           | 100                 |   |
| 130               | 85.589996           | 100                 |   |
| 140               | 90.330002           | 100                 |   |
| 150               | 93.629997           | 100                 |   |
|                   |                     |                     |   |



| Time<br>(Minutes) | Minimum %<br>Warned | Maximum %<br>Warned |   |       | Night-time First Alert |
|-------------------|---------------------|---------------------|---|-------|------------------------|
| 0                 | 0                   | 0                   | ^ | 100   |                        |
| 10                | 0.18                | 39.889999           |   |       |                        |
| 20                | 0.73                | 72.139999           |   | 80    | o <b>-</b>             |
| 30                | 1.73                | 83.360001           |   | Jec   |                        |
| 40                | 3.24                | 89.400002           |   | arr   |                        |
| 50                | 5.33                | 93.360001           |   | ≥ 60  | D                      |
| 60                | 8.07                | 95.910004           |   | ion   |                        |
| 70                | 11.51               | 97.510002           |   | lat   |                        |
| 80                | 15.67               | 98.489998           |   | nd ⁴⁰ |                        |
| 90                | 20.52               | 99.089996           |   | A     |                        |
| 100               | 26.030001           | 99.449997           |   | 8 20  | 0                      |
| 110               | 32.07               | 99.669998           |   |       | Uncertainty Bounds     |
| 120               | 38.490002           | 99.800003           |   |       | - Min<br>- Max         |
| 130               | 45.119999           | 99.879997           |   | 0     |                        |
| 140               | 51.740002           | 99.93               |   |       | 0 100 200 300          |
| 150               | 58.16               | 99.959999           |   |       | Time (Minutes)         |

Figure 6. Warning Diffusion Curves for Daytime and Night-Time First Alert.

#### **Protective Action Initiation**

Protective Action Initiation (PAI) is the rate at which PAR take action after receiving an evacuation order (warning) (Figure). Unlike the warning diffusion curves, the PAI curves include a perception element as well. The perception element describes the relative awareness of the PAR. Preparedness: Unknown/Perception: Unknown was again selected for this study area.



Figure 7. Protective Action (PAI) Curve.

#### 3.3. Life Loss

#### **Existing Without-Project Condition**

Estimates of life loss were generated using HEC-LifeSim for without-project, breach, and non-breach inundation scenarios. HEC-LifeSim utilizes Monte Carlo uncertainty analysis, and 1,000 Monte Carlo iterations were run for each scenario. The estimated life loss totals in the existing without-project condition by warning time are summarized below in Table 4. The life loss statistics for each run are shown in the Figure and Figure box-and-whisker plots. The ranges only reflect the uncertainty parameters for life loss as modeled in the HEC-LifeSim scenarios and do not include uncertainties for the breach parameters or other hydraulic/hydrologic factors.

| Without Project Life Loss |                           |                  |                                                |       |                                    |                       |              |                |  |  |
|---------------------------|---------------------------|------------------|------------------------------------------------|-------|------------------------------------|-----------------------|--------------|----------------|--|--|
| Minimal Warning           |                           |                  |                                                |       |                                    |                       |              |                |  |  |
| Scenario Name             | ⊺ Median<br>Lo            | Total Life<br>ss | Life Loss Total 25 <sup>th</sup><br>Percentile |       | Life Loss Total<br>75th Percentile |                       | Life Lo<br>M | ss Total<br>ax |  |  |
|                           | Day                       | Night            | Day                                            | Night | Day                                | Night                 | Day          | Night          |  |  |
| 1FT OT                    | 0                         | 0                | 0                                              | 0     | 0                                  | 0                     | 4            | 3              |  |  |
| 100% Loading              | 0                         | 0                | 0                                              | 0     | 0                                  | 0                     | 1            | 2              |  |  |
| 50% Loading               | 0                         | 0                | 0                                              | 0     | 0                                  | 0                     | 0            | 0              |  |  |
|                           |                           | Amp              | ole Warning                                    | g     |                                    |                       |              |                |  |  |
| Scenario Name             | Median Total Life<br>Loss |                  | Life Loss Total<br>25th Percentile             |       | Life Los<br>75th Pe                | ss Total<br>ercentile | Life Lo<br>M | ss Total<br>ax |  |  |
|                           | Day                       | Night            | Day                                            | Night | Day                                | Night                 | Day          | Night          |  |  |
| 1FT OT                    | 0                         | 0                | 0                                              | 0     | 0                                  | 0                     | 1            | 2              |  |  |
| 100% Loading              | 0                         | 0                | 0                                              | 0     | 0                                  | 0                     | 0            | 0              |  |  |
| 50% Loading               | 0                         | 0                | 0                                              | 0     | 0                                  | 0                     | 1            | 1              |  |  |

Table 4. Without Project Life Loss with Minimal and Ample Warning



Figure 8. Life Loss with Minimal Warning in the Existing Condition.



#### Figure 9. Life Loss with Ample Warning in the Existing Condition.

#### With-Project Condition – Non-Breach Scenario

The estimated life loss totals in the non-breach scenario by warning time are summarized in Table 5, Figure, and Figure.

| Non-Breach Life Loss |                           |       |                                                |       |                                    |                      |              |                |  |  |
|----------------------|---------------------------|-------|------------------------------------------------|-------|------------------------------------|----------------------|--------------|----------------|--|--|
| Minimal Warning      |                           |       |                                                |       |                                    |                      |              |                |  |  |
| Scenario Name        | Median Total Life<br>Loss |       | Life Loss Total 25 <sup>th</sup><br>Percentile |       | Life Loss Total<br>75th Percentile |                      | Life Lo<br>M | ss Total<br>ax |  |  |
|                      | Day                       | Night | Day                                            | Night | Day                                | Night                | Day          | Night          |  |  |
| 1 FT OT              | 0                         | 0     | 0                                              | 0     | 0                                  | 0                    | 4            | 3              |  |  |
| 100% Loading         | 0                         | 0     | 0                                              | 0     | 0                                  | 0                    | 1            | 2              |  |  |
| 50% Loading          | 0                         | 0     | 0                                              | 0     | 0                                  | 0                    | 0            | 1              |  |  |
|                      |                           | Amp   | ole Warning                                    | g     |                                    |                      |              |                |  |  |
| Scenario Name        | Median Total Life<br>Loss |       | Life Loss Total<br>25th Percentile             |       | Life Los<br>75th Pe                | ss Total<br>rcentile | Life Lo<br>M | ss Total<br>ax |  |  |
|                      | Day                       | Night | Day                                            | Night | Day                                | Night                | Day          | Night          |  |  |
| 1FT OT               | 0                         | 0     | 0                                              | 0     | 0                                  | 0                    | 1            | 3              |  |  |
| 100% Loading         | 0                         | 0     | 0                                              | 0     | 0                                  | 0                    | 0            | 0              |  |  |
| 50% Loading          | 0                         | 0     | 0                                              | 0     | 0                                  | 0                    | 1            | 1              |  |  |

Table 5. Life Loss and PAR with Minimal Warning and Ample Warning, With Project, Non-Breach.



Figure 10. Life Loss with Minimal Warning, With Project, Non-Breach.



Figure 11. Life Loss with Ample Warning, With Project, Non-Breach.

#### With-Project Condition – Breach Scenario

The estimated life loss totals in the breach scenario by warning time are summarized in Table 6, Figure, and **Error! Reference source not found.** 

| Breach St 800 Life Loss |                           |       |                                                |       |                                    |                       |              |                |  |  |
|-------------------------|---------------------------|-------|------------------------------------------------|-------|------------------------------------|-----------------------|--------------|----------------|--|--|
| Minimal Warning         |                           |       |                                                |       |                                    |                       |              |                |  |  |
| Scenario Name           | Median Total Life<br>Loss |       | Life Loss Total 25 <sup>th</sup><br>Percentile |       | Life Loss Total<br>75th Percentile |                       | Life Lo<br>M | ss Total<br>ax |  |  |
|                         | Day                       | Night | Day                                            | Night | Day                                | Night                 | Day          | Night          |  |  |
| 1FT OT                  | 0                         | 0     | 0                                              | 0     | 0                                  | 0                     | 3            | 3              |  |  |
| 100% Loading            | 0                         | 0     | 0                                              | 0     | 0                                  | 0                     | 2            | 2              |  |  |
| 50% Loading             | 0                         | 0     | 0                                              | 0     | 0                                  | 0                     | 0            | 0              |  |  |
|                         |                           | Amp   | ole Warning                                    | g     |                                    |                       |              |                |  |  |
| Scenario Name           | Median Total Life<br>Loss |       | Life Loss Total<br>25th Percentile             |       | Life Los<br>75th Pe                | ss Total<br>ercentile | Life Lo<br>M | ss Total<br>ax |  |  |
|                         | Day                       | Night | Day                                            | Night | Day                                | Night                 | Day          | Night          |  |  |
| OT                      | 0                         | 0     | 0                                              | 0     | 0                                  | 0                     | 1            | 0              |  |  |
| 100% Loading            | 0                         | 0     | 0                                              | 0     | 0                                  | 0                     | 1            | 1              |  |  |
| 50% Loading             | 0                         | 0     | 0                                              | 0     | 0                                  | 0                     | 0            | 0              |  |  |

Table 6. Life Loss and PAR with Minimal Warning, With Project, Breach St 800 Scenario.

Table 7. Life Loss and PAR with Minimal Warning, With Project, Breach St 1800 Scenario.

| Breach St 1800 Life Loss |                           |                  |                                                |       |                                    |                       |              |                |  |  |
|--------------------------|---------------------------|------------------|------------------------------------------------|-------|------------------------------------|-----------------------|--------------|----------------|--|--|
| Minimal Warning          |                           |                  |                                                |       |                                    |                       |              |                |  |  |
| Scenario Name            | Median ⊺<br>Lo            | Fotal Life<br>ss | Life Loss Total 25 <sup>th</sup><br>Percentile |       | Life Loss Total<br>75th Percentile |                       | Life Lo<br>M | ss Total<br>ax |  |  |
|                          | Day                       | Night            | Day                                            | Night | Day                                | Night                 | Day          | Night          |  |  |
| 1FT OT                   | 0                         | 0                | 0                                              | 0     | 0                                  | 0                     | 4            | 3              |  |  |
| 100% Loading             | 0                         | 0                | 0                                              | 0     | 0                                  | 0                     | 2            | 2              |  |  |
| 50% Loading              | 0                         | 0                | 0                                              | 0     | 0                                  | 0                     | 0            | 0              |  |  |
|                          |                           | Amp              | ole Warnin                                     | g     |                                    |                       |              |                |  |  |
| Scenario Name            | Median Total Life<br>Loss |                  | Life Loss Total<br>25th Percentile             |       | Life Los<br>75th Pe                | ss Total<br>ercentile | Life Lo<br>M | ss Total<br>ax |  |  |
|                          | Day                       | Night            | Day                                            | Night | Day                                | Night                 | Day          | Night          |  |  |
| 1FT OT                   | 0                         | 0                | 0                                              | 0     | 0                                  | 0                     | 1            | 2              |  |  |
| 100% Loading             | 0                         | 0                | 0                                              | 0     | 0                                  | 0                     | 1            | 1              |  |  |
| 50% Loading              | 0                         | 0                | 0                                              | 0     | 0                                  | 0                     | 0            | 0              |  |  |

Table 8. Life Loss and PAR with Minimal Warning, With Project, Breach St 1500 Scenario.

Breach St 1500 Life Loss

| Minimal Warning |                |                           |                     |                                                |                                    |                                    |                        |                        |  |
|-----------------|----------------|---------------------------|---------------------|------------------------------------------------|------------------------------------|------------------------------------|------------------------|------------------------|--|
| Scenario Name   | Median T<br>Lo | Median Total Life<br>Loss |                     | Life Loss Total 25 <sup>th</sup><br>Percentile |                                    | Life Loss Total<br>75th Percentile |                        | Life Loss Total<br>Max |  |
|                 | Day            | Night                     | Day                 | Night                                          | Day                                | Night                              | Day                    | Night                  |  |
| 1FT OT          | 0              | 0                         | 0                   | 0                                              | 0                                  | 0                                  | 2                      | 3                      |  |
| 100% Loading    | 0              | 0                         | 0                   | 0                                              | 0                                  | 0                                  | 1                      | 3                      |  |
| 50% Loading     | 0              | 0                         | 0                   | 0                                              | 0                                  | 0                                  | 0                      | 0                      |  |
|                 | Ample Warning  |                           |                     |                                                |                                    |                                    |                        |                        |  |
| Scenario Name   | Median ⊺<br>Lo | Fotal Life<br>ss          | Life Los<br>25th Pe | ss Total<br>ercentile                          | Life Loss Total<br>75th Percentile |                                    | Life Loss Total<br>Max |                        |  |
|                 | Day            | Night                     | Day                 | Night                                          | Day                                | Night                              | Day                    | Night                  |  |
| 1FT OT          | 0              | 0                         | 0                   | 0                                              | 0                                  | 0                                  | 3                      | 2                      |  |
| 100% Loading    | 0              | 0                         | 0                   | 0                                              | 0                                  | 0                                  | 1                      | 3                      |  |
| 50% Loading     | 0              | 0                         | 0                   | 0                                              | 0                                  | 0                                  | 0                      | 0                      |  |



Figure 12. Life Loss with Minimal Warning, With Project, Breach Scenario.



Figure 13. Life Loss with Ample Warning, With Project, Breach Scenario.

#### **3.4. Incremental Life Loss**

Incremental life loss is summarized below in **Error! Reference source not found.** and **Error! Reference source not found.** In the minimal and ample warning scenario, median incremental life loss is approximately zero.

| Incremental Life Loss |               |           |                |       |                |       |  |  |
|-----------------------|---------------|-----------|----------------|-------|----------------|-------|--|--|
|                       | Mi            | inimal Wa | arning         |       |                |       |  |  |
| O seconda Nama        | Breach St 800 |           | Breach St 1800 |       | Breach St 1500 |       |  |  |
| Scenario Name         | Day           | Night     | Day            | Night | Day            | Night |  |  |
| 1FT OT                | 0             | 0         | 0              | 0     | 0              | 0     |  |  |
| 100% Loading          | 0             | 0         | 0              | 0     | 0              | 0     |  |  |
| 50% Loading           | 0             | 0         | 0              | 0     | 0              | 0     |  |  |
|                       | Ample Warning |           |                |       |                |       |  |  |
| Soonaria Nama         | Breach        | St 800    | Breach St 1800 |       | Breach St 1500 |       |  |  |
| Scenario Name         | Day           | Night     | Day            | Night | Day            | Night |  |  |
| 1FT OT                | 0             | 0         | 0              | 0     | 0              | 0     |  |  |
| 100% Loading          | 0             | 0         | 0              | 0     | 0              | 0     |  |  |
| 50% Loading           | 0             | 0         | 0              | 0     | 0              | 0     |  |  |

#### 3.5. Key Limitations / Lessons Learned

For this model, evacuation simulation on roads was not included. Duration of flooding is short and therefore roadway inundation is minimal, but some uncertainty exists since evacuation is limited to vertical movement (i.e., to the attic or second floor) within structures. Additionally, the modeling parameters related to warning and protective action were all given distributions with the greatest uncertainty, absent data indicating otherwise. Finally, population estimates are based on NSI 2.0 values, without more detailed information of the study area demographics.

#### 3.6. Conclusions

Life loss in the with-project condition (breach and non-breach) is less than the withoutproject condition, so there is unlikely to be any additional risk of life loss from the levee. Indeed, the risk of life loss is likely reduced from the presence of the proposed levee. Furthermore, incremental life loss is approximately zero, suggesting there is little-to-no additional risk of life loss due to failure of the levee. Table 5 and Table 6 summarize the minimal and ample warning scenarios respectively.

|                 | Life Loss for Minimal Warning Scenario |       |            |       |             |       |  |
|-----------------|----------------------------------------|-------|------------|-------|-------------|-------|--|
| Statistic       | Breach (St. 800)                       |       | Non-Breach |       | Incremental |       |  |
|                 | Day                                    | Night | Day        | Night | Day         | Night |  |
| 95th Percentile | 1                                      | 0     | 1          | 0     | 0           | 0     |  |
| 75th Percentile | 0                                      | 0     | 0          | 0     | 0           | 0     |  |
| Median          | 0                                      | 0     | 0          | 0     | 0           | 0     |  |
| 25th Percentile | 0                                      | 0     | 0          | 0     | 0           | 0     |  |
| 5th Percentile  | 0                                      | 0     | 0          | 0     | 0           | 0     |  |

Table 5. Minimal Warning Scenario

Table 6. Ample Warning Scenario

|                 | Life Loss for Ample Warning Scenario |       |            |       |             |       |  |
|-----------------|--------------------------------------|-------|------------|-------|-------------|-------|--|
| Statistic       | Breach (St. 800)                     |       | Non-Breach |       | Incremental |       |  |
|                 | Day                                  | Night | Day        | Night | Day         | Night |  |
| 95th Percentile | 0                                    | 0     | 0          | 0     | 0           | 0     |  |
| 75th Percentile | 0                                    | 0     | 0          | 0     | 0           | 0     |  |
| Median          | 0                                    | 0     | 0          | 0     | 0           | 0     |  |
| 25th Percentile | 0                                    | 0     | 0          | 0     | 0           | 0     |  |
| 5th Percentile  | 0                                    | 0     | 0          | 0     | 0           | 0     |  |

# 4. Potential Failure Mode Analysis (PFMA)

A failure mode is a unique set of conditions and/or sequence of events that could result in failure, where failure is "characterized by the sudden, rapid, and uncontrolled release of impounded water" (FEMA 2003). A Potential Failure Mode Analysis (PFMA) is the process of identifying and fully describing potential failure modes. A facilitator guided the team members in developing the potential failure modes, based on the team's understanding of the project vulnerabilities resulting from the data review and current field conditions.

A PFMA was conducted by the following personnel (Table 7).

| Name                 | Role                           | Organization                          |
|----------------------|--------------------------------|---------------------------------------|
| Troy Cosgrove, PE    | Facilitator                    | MVD Levee Safety Center, Branch Chief |
| Jon Korneliussen, PE | Civil Engineer, Technical Lead | MVD Levee Safety Center               |
| Cody Isbell          | Geotechnical Engineer          | MVM, Geotech Design                   |
| Nicholas Bidlack     | Levee Safety                   | MVM, Levee Safety                     |
| Don Davenport        | Hydraulic Engineer             | MVM, Hydrologic Engineering Section   |
| Andy Simmerman       | Project Manager                | MVM, Project Mgmt. Branch             |
| Jennifer Roberts     | Plan Formulator                | RPEDS - South                         |

Table 7. Personnel Conducting the PFMA.

On February 11, 2022, a scaled-down Potential Failure Mode Analysis (PFMA) was performed to inform the design of a levee and floodwall for the Memphis Metropolitan North Deo. The scaled-down nature of the analysis was used to meet project requirements while being commensurate with the size and scope of the study. No risk exists now because the project still has not been built. The intention of the PFMA session is to mitigate future risk by identifying key items of concern that should be addressed during design and cost risks in development of the total project cost.

#### 4.1. Design Background

The proposed structure is a levee and floodwall that works to contain floodwaters within the designated floodway and prevent flooding in the southwest quadrant of the intersection of Goodman Rd and Hwy 51.



Figure 3: Levee-Floodwall (Plan 8) proposed geometry.

The new 3,000 linear foot levee and floodwall system will protect structures on the leftbank of Horn Lake Creek upstream of Goodman Rd. The levee will be constructed with 3-foot horizontal to 1-foot vertical (3H:1V) side slopes and a 12-foot-wide crown. The levee will run approx. 2,475 linear feet adjacent to US Hwy. 51 with an average height of 5'. A 600-linear-foot ditch will drain a depression on the riverside of the levee. Where development makes a levee infeasible, protection will transition to a 525 linear foot floodwall. The floodwall be 18" thick with an eight-foot-wide foundation. The wall will be five feet high and protrude 3.5 feet above ground level. The levee will require approx. 14,000 cubic yards of fill, and the floodwall will require 300 cubic yards of reinforced concrete. This alternative will require relocation of several utility poles and signs, removal and replacement of asphalt, and demolition of an existing building. The proposed geometry can be seen in Figure 3, where the floodwall is illustrated in blue and the levee is illustrated in yellow.

The levee and floodwall was conceptualized to reduce flood risk for events starting at the .002 (500 yr.) Annual Exceedance Probability (AEP) flood event. The levee and floodwall have a top elevation that is set at the .002 AEP stage resulting from estimated future flows. The levee and floodwall have a maximum elevation of 275.5 sloping down from south to north, ending at an elevation of 274.0 near the intersection of Goodman Rd and Hwy 51.

The peak head difference across the levee and flood wall during the 0.2% AEP event with a maximum height of 13.3 feet. The total head differential is influenced by an existing ditch along the northbound lanes of Hwy 51 that will remain. Figure 14 shows the river flood profiles adjacent to the levee and floodwall. Figure 15 shows the hydrograph of the 0.2% AEP breach scenario.



Figure 14. 99.99%, 50%, 20% 10% 4%, 2%, 1%, 0.2% AEP Flood Stages in Horn Lake Creek adjacent to the TSP Levee and Floodwall.



Figure 15. Hydrograph for the 0.2% (500-year) flood at station 15+00 along the levee alignment.

Worst case scenario for loading conditions on the levee and floodwall will occur during the 0.2% AEP event when Horn Lake Creek is at it's peak stage and very minimal water is in the roadside ditch along Hwy 51. The maximum possible head difference is approximately 13.3 feet. This specific event is highly unlikely to occur, but was analyzed to consider the highest theoretically possible head difference across the levee.

For the failure scenarios, breaching causing a 200' wide failure triggered at the peak stage of the 0.2% AEP. Both overtopping and piping failures were considered. A piping failure at STA 15+00 provided the greatest downstream stages and flows across the levee and floodwall. The failure scenario shows that the without project condition is worse than a breach in the project condition.

#### 4.2. Brainstorming PFMs

- PFM-1: Overtopping with breach of the levee
- PFM-2: Overtopping with breach of the floodwall
- PFM-3: Vehicle impacting floodwall causing breach
- PFM-4: Sliding/overturning leads to breach of the floodwall
- PFM-5: Failure of internal stability of floodwall leads to breach
- PFM-6: CLE under the floodwall (seepage) leads to breach
- PFM-7: CLE at the floodwall levee tie in leads to breach

- PFM-8: Streambank erosion along the floodwall/HL creek leads to slope instability and failure of the wall
- PFM-9: Settlement due to groundwater extraction leads to breach (settlement/consolidation of aquifer due to groundwater extraction)
- PFM-10: CLE between the floodwall highway embankment tie in leads to breach
- PFM-11: Global stability failure of the floodwall leads to breach
- PFM-12: Differential settlement of floodwall leads to breach
- PFM-13: CLE along a crack in the levee embankment leads to breach
- PFM-14: BEP through the levee foundation leads to breach
- PFM-15: BEP through the floodwall foundation leads to breach
- PFM-16: Slope stability failure of the levee leads to breach
- PFM-17: CLE through abandoned utility under levee leads to breach
- PFM-18: Streambank erosion at the levee leads to breach
- PFM-19: Erosion of levee embankment during a flood leads to breach
- PFM-20: Debris build up at Goodman Road causing premature overtopping of the levee and floodwall
- PFM-21: CLE through an animal burrow leads to breach
- PFM-22: CLE through the embankment due to tree roots leads to breach
- PFM-23: Tree collapse or excessive vegetation causes turbulence and erosion of streambank leading to breach
- PFM-24: CLE along waterline under floodwall leads to breach

#### 4.3. Evaluating PFMs

Many of the brainstormed PFMs are typically managed with designed defensive measures, adhering to published engineering standards, construction Quality Assurance (QA), or Emergency Action Plans (EAP). A more thorough risk assessment (i.e., Semi-Quantitative Risk Assessment – SQRA) will occur during the pre-construction engineering and design (PED) phase of the project.

For this screening-level assessment, qualitative methods were used to determine life loss likelihoods if that failure mode occurred. This evaluation did not consider the actual failure likelihood (i.e., reliability) from this level of design. The ease of prevention via design considerations was evaluated, and a decision was made if further evaluation was required. Even if the potential for failure was high, if the evaluation states that it is a typical design consideration, no additional evaluation is required at this stage.

| Eailure Modes                                                                                              | Evaluations/factors                                                                                                                                                                              | Mitigation                                                                                                                                                                       | Uncortainties                                                                                                           | Other                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Tallule Modes                                                                                              |                                                                                                                                                                                                  | willigation                                                                                                                                                                      | Uncertainties                                                                                                           | considerations                                                                                                                               |
| PFM-1: Overtopping with breach of the levee                                                                | Overtop for any event<br>greater than 500 yr.<br>Height of the levee is<br>5-7' and will not likely<br>have high overtopping<br>velocities<br>.5' of overtopping<br>duration is ~6 hrs.          | Turfing of<br>embankment                                                                                                                                                         | Current<br>results are<br>from hydraulic<br>computer<br>models                                                          | If further<br>evaluation<br>during PED that<br>overtopping<br>velocities are<br>significant<br>additional<br>mitigation may<br>be needed.    |
| PFM-2: Overtopping with breach of the floodwall                                                            | Overtop for any event<br>greater than 500 yr.<br>Height of the floodwall<br>is 3.5' and this results<br>in a reduced plunge<br>depth of overtopping<br>.5' of overtopping<br>duration is ~6 hrs. | Due to the location<br>of the floodwall<br>(parking lot) there<br>will be asphalt up to<br>the floodwall                                                                         | Current<br>results are<br>from hydraulic<br>computer<br>models                                                          | If further<br>evaluation<br>during PED that<br>overtopping<br>plunge forces<br>are significant<br>additional<br>mitigation may<br>be needed. |
| PFM-3: Vehicle impacting floodwall causing breach                                                          | Less traffic<br>anticipated near<br>floodwall located at<br>rear of building, a<br>low-speed area.<br>Likelihood of short<br>duration of flood and<br>vehicle impact<br>coinciding               | During design the<br>wall will be<br>evaluated for<br>vehicle impacts<br>Implement<br>temporary flood<br>protection if wall<br>were damaged<br>Install bollards or<br>guiderails | Unsure what<br>impact loads<br>are accounted<br>for in design<br>of the<br>floodwall                                    |                                                                                                                                              |
| PFM-4: Global stability<br>failure<br>(sliding/overturning/bearing)<br>leads to breach of the<br>floodwall | No foundation<br>information nor<br>design has been<br>completed                                                                                                                                 | Sliding,<br>overturning, and<br>bearing will be<br>designed and<br>analyzed during<br>design phase to<br>ensure meeting<br>appropriate factors<br>of safety                      | Due to the<br>lack of<br>subsurface<br>investigations,<br>there is<br>uncertainty<br>on the<br>foundation<br>conditions | Alternate<br>design<br>considerations<br>could be an i-<br>wall if RE is an<br>issue, since the<br>wall is under 4'                          |
| PFM-5: failure of internal<br>stability of floodwall leads to<br>breach                                    | Design has not been<br>completed                                                                                                                                                                 | Wall will be<br>designed and<br>analyzed to ensure<br>meeting<br>appropriate factors<br>of safety                                                                                | Unsure of<br>actual layout<br>of wall                                                                                   |                                                                                                                                              |

#### Table 8: Potential Failure Modes Analysis.

| Failure Modes                  | Evaluations/factors       | Mitigation                  | Uncertainties   | Other          |
|--------------------------------|---------------------------|-----------------------------|-----------------|----------------|
|                                |                           | -                           |                 | considerations |
| PFM-6: CLE under the           | No foundation             | Wall will be analyzed       | Due to the      | Waterline      |
| floodwall (seepage) leads to   | information nor design    | for seepage pressures       | lack of         | parallel to    |
| breach                         | has been completed        | to ensure that they fall    | subsurface      | Goodman Rd.    |
|                                |                           | within the proper           | investigations, | (~30ft from    |
|                                |                           | factors of safety           | there is        | edge of        |
|                                |                           |                             | uncertainty     | roadway),      |
|                                |                           | Due to the low head         | on the          | could be a     |
|                                |                           | differential and short      | foundation      | complicating   |
|                                |                           | duration of the flood,      | conditions      | factor         |
|                                |                           | seepage would likely        | and need for    |                |
|                                |                           | not be an issue.            | a seepage       |                |
|                                |                           | However, a short            | cutoff          |                |
|                                |                           | seepage cutoff could be     |                 |                |
|                                |                           | installed (i.e. sheet pile) |                 |                |
| PFM-7: CLE at the floodwall    | Current wall levee layout | Needs to be evaluated       | Due to the      |                |
| levee tie in leads to breach   | has a 25'overlap between  | during design to ensure     | lack of         |                |
|                                | the wall and the levee    | embedment length is         | information     |                |
|                                |                           | sufficient                  | on the          |                |
|                                | Compaction may be         |                             | borrow,         |                |
|                                | difficult between the     | Specifications should       | unsure          |                |
|                                | levee floodwall interface | address any special         | permeability    |                |
|                                |                           | compaction at this          | parameters of   |                |
|                                | Depending on borrow       | interface                   | borrow          |                |
|                                | source it may make this   |                             | material        |                |
|                                | likely                    |                             |                 |                |
|                                | пкету                     |                             |                 |                |
|                                | Most likely nath to       |                             |                 |                |
|                                | develop seepage due to    |                             |                 |                |
|                                | void space                |                             |                 |                |
| PFM-8: Streambank erosion      | Streambank is well        | Evaluate during design      | Uncertainty     |                |
| along the floodwall/HL         | vegetated, with steep     | to determine if Rip Rap     | about           |                |
| creek leads to slope           | slopes (maybe 1:1). Horn  | or another slope            | velocities in   |                |
| instability and failure of the | Lake Creek has reaches of | protection is needed        | the channel     |                |
| wall                           | instability               |                             | due to lack of  |                |
|                                |                           | Evaluate channel            | surveys and     |                |
|                                |                           | velocities and geometry     | site-specific   |                |
|                                |                           |                             | modeling        |                |
|                                |                           |                             |                 |                |
|                                |                           |                             | Unsure about    |                |
|                                |                           |                             | erosion         |                |
|                                |                           |                             | resistance of   |                |
|                                |                           |                             | streambank      |                |
|                                |                           |                             | materials       |                |

| Failure Modes                                                                                                                                      | Evaluations/factors                                                                                                                                                                                                                                                                                            | Mitigation                                                                                                                                                                                                            | Uncertainties                                                                                                                                                                         | Other                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                                                       | considerations                                                                                                                 |
| PFM-9: Settlement due to<br>groundwater extraction<br>leads to breach<br>(settlement/consolidation of<br>aquifer due to groundwater<br>extraction) | Depending on foundation<br>information and the<br>potential for high<br>groundwater extraction,<br>this settlement would<br>need to be evaluated<br>during design                                                                                                                                              | Perform settlement<br>analysis and ensure that<br>groundwater extraction<br>effects are considered                                                                                                                    | Unsure that<br>groundwater<br>extraction is<br>leading to<br>settlement in this<br>area                                                                                               |                                                                                                                                |
| PFM-10: CLE between the<br>floodwall highway<br>embankment tie in leads to<br>breach                                                               | Current wall highway<br>embankment layout has a<br>10' perpendicular 25'<br>along the profile of the<br>levee.<br>Compaction may be<br>difficult between the<br>highway embankment and<br>the floodwall interface<br>Depending on backfill<br>material it may make this<br>failure mode more or less<br>likely | Needs to be evaluated<br>during design to ensure<br>embedment length is<br>sufficient<br>Specifications should<br>address any special<br>compaction at this<br>interface and also<br>specialized backfill<br>material | Due to the lack of<br>information on<br>the highway<br>embankment<br>materials and<br>backfill, unsure<br>permeability<br>parameters of the<br>embankment<br>materials or<br>backfill | Coordination<br>with the state<br>MDOT.<br>Consider 90<br>degree turn<br>into roadway<br>embankment<br>past bridge<br>abutment |
| PFM-11: Slope stability<br>failure of the floodwall leads<br>to breach                                                                             | Need to evaluate slope<br>stability of floodwall<br>utilizing<br>Properties of the<br>foundation materials.                                                                                                                                                                                                    | Evaluate during design<br>to determine if any<br>ground improvement<br>may need to be<br>performed                                                                                                                    | No specific site<br>sub surface<br>information has<br>been obtained,<br>unsure of the<br>foundation<br>conditions.                                                                    |                                                                                                                                |
| PFM-12: Differential<br>settlement of floodwall<br>leads to breach                                                                                 | Depending upon<br>foundation conditions<br>may make this failure<br>more or less likely<br>These conditions may not<br>be evident until actual<br>excavation during<br>construction                                                                                                                            | Needs to be evaluated<br>during design<br>Specifications should be<br>written to remove<br>unacceptable<br>foundation material<br>and replaced with<br>select material                                                | No specific site<br>sub surface<br>information has<br>been obtained,<br>unsure of the<br>foundation<br>conditions.                                                                    |                                                                                                                                |
| PFM-13: CLE along a crack in<br>the levee embankment<br>leads to breach                                                                            | Depending on the borrow<br>source may make this<br>failure mode more or less<br>likely                                                                                                                                                                                                                         | Needs to be evaluated<br>during design<br>Site specific exploration<br>program should be<br>conducted to classify<br>borrow material or<br>identify off site borrow                                                   | No specific site<br>sub surface<br>information has<br>been obtained,<br>unsure of the<br>borrow material.                                                                             |                                                                                                                                |

| Failure Modes              | Evaluations/factors            | Mitigation            | Uncertainties        | Other           |
|----------------------------|--------------------------------|-----------------------|----------------------|-----------------|
|                            |                                |                       |                      | considerations  |
| PFM-14: BEP through the    | Depending upon foundation      | Needs to be           | No specific site sub | PFM-14: BEP     |
| levee foundation leads to  | conditions may make this       | evaluated during      | surface information  | through the     |
| breach                     | failure more or less likely    | design                | has been obtained,   | levee           |
|                            |                                |                       | unsure of the        | foundation      |
|                            | Anticipated short duration     | Site specific         | foundation           | leads to breach |
|                            | of loading will make this less | exploration           | conditions.          |                 |
|                            | likely                         | program should be     |                      |                 |
|                            |                                | conducted to          |                      |                 |
|                            | Research into borings within   | classify foundation   |                      |                 |
|                            | the area indicates typically   | materials.            |                      |                 |
|                            | 20 of fine materials           |                       |                      |                 |
| floodwall foundation loads | conditions may make this       | wall will be          | surface information  | through the     |
| to breach                  | failure more or less likely    | seenage pressures     | has been obtained    | floodwall       |
|                            | Tandre more of less likely     | to ensure that they   | unsure of the        | foundation      |
|                            | Anticipated short duration     | fall within the       | foundation           | leads to breach |
|                            | of loading will make this less | proper factors of     | conditions           |                 |
|                            | likely                         | safety                | and need for a       |                 |
|                            | ,                              | ,                     | seepage cutoff.      |                 |
|                            | Research into borings within   | Site specific         |                      |                 |
|                            | the area indicates typically   | exploration           |                      |                 |
|                            | 20' of fine materials          | program should be     |                      |                 |
|                            |                                | conducted to          |                      |                 |
|                            |                                | classify foundation   |                      |                 |
|                            |                                | materials.            |                      |                 |
|                            |                                | Due to the low head   |                      |                 |
|                            |                                | differential and      |                      |                 |
|                            |                                | short duration of     |                      |                 |
|                            |                                | the flood, seepage    |                      |                 |
|                            |                                | would likely not be   |                      |                 |
|                            |                                | an issue. However,    |                      |                 |
|                            |                                | a short seepage       |                      |                 |
|                            |                                | cutoff could be       |                      |                 |
|                            |                                | installed (i.e. sheet |                      |                 |
|                            |                                | pile)                 |                      |                 |

| Failure Modes                                                                 | Evaluations/factors                                                                                                                                                                                                                                                                                                                                                                                                            | Mitigation                                                                                                                                                                                     | Uncertainties                                                                                                                                                           | Other                                                                                                                                                                          |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                         | considerations                                                                                                                                                                 |
| PFM-16: Slope<br>stability failure of<br>the levee leads to<br>breach         | Need to evaluate slope<br>stability of levee utilizing<br>Properties of the<br>embankment and<br>foundation materials.                                                                                                                                                                                                                                                                                                         | Evaluate during<br>design to<br>determine if any<br>ground<br>improvement<br>may need to be<br>performed                                                                                       | No specific site sub surface<br>information has been<br>obtained, unsure of the<br>embankment and foundation<br>conditions.                                             |                                                                                                                                                                                |
| PFM-17: CLE<br>through<br>abandoned utility<br>under levee leads<br>to breach | This is an urban area and<br>there is potential for<br>abandoned utilities within<br>the levee footprint.<br>Main and utilities run on<br>left of Hwy 51, investigate<br>when topo data available.<br>One service manhole runs<br>on east side, need to<br>investigate                                                                                                                                                         | Over excavate<br>and remove<br>abandoned utility<br>Inspection or Cut<br>off trench would<br>be utilized to help<br>identify any<br>shallow<br>abandoned<br>utilities within the<br>foundation | Likelihood of abandoned<br>utilities in the foundation                                                                                                                  | Utilize geophysics<br>(i.e. ground<br>penetrating radar)<br>to identify any<br>abandoned utilities<br>in the foundation.<br>This could eliminate<br>need for cut off<br>trench |
| PFM-18:<br>Streambank<br>erosion at the<br>levee leads to<br>breach           | Streambank is well<br>vegetated, with steep<br>slopes (maybe 1:1). Horn<br>Lake Creek has reaches of<br>instability<br>Levee is set back 30' from<br>edge of stream. The<br>change in floodplain width<br>at outside corner of the<br>levee, and the interface<br>between levee and<br>floodwall where there is a<br>change in direction<br>warrant closer analysis of<br>velocities and may require<br>additional protection. | Evaluate during<br>design to<br>determine if Rip<br>Rap or other<br>slope protection<br>is needed<br>Evaluate channel<br>velocities and<br>geometry                                            | Uncertainty about velocities in<br>the channel due to lack of<br>surveys and site-specific<br>modeling<br>Unsure about erosion<br>resistance of streambank<br>materials |                                                                                                                                                                                |

| Failure Modes              | Evaluations/factors      | Mitigation          | Uncertainties | Other            |
|----------------------------|--------------------------|---------------------|---------------|------------------|
|                            |                          | _                   |               | considerations   |
| PFM-19: Erosion of levee   | Initial modeling         | Evaluate during     | Uncertainty   |                  |
| embankment during a flood  | indicates that           | design to determine | about         |                  |
| leads to breach            | velocities are low       | if Rip Rap or other | velocities    |                  |
|                            | along the levee during   | embankment slope    | along the     |                  |
|                            | floods.                  | protection is       | levee due to  |                  |
|                            |                          | needed              | lack of       |                  |
|                            | A vulnerable area        |                     | surveys and   |                  |
|                            | may be between the       |                     | site-specific |                  |
|                            | floodwall interface      |                     | modeling      |                  |
|                            | and the first 90         |                     |               |                  |
|                            | degree turn in the       |                     | Unsure about  |                  |
|                            | levee.                   |                     | erosion       |                  |
|                            |                          |                     | resistance of |                  |
|                            | Levee is set back 30'    |                     | the           |                  |
|                            | from edge of             |                     | embankment    |                  |
|                            | streambank and may       |                     | materials     |                  |
|                            | experience higher        |                     | since borrow  |                  |
|                            | velocities along the     |                     | material has  |                  |
|                            | levee. The change in     |                     | not been      |                  |
|                            | floodplain width at      |                     | classified    |                  |
|                            | outside corner of the    |                     |               |                  |
|                            | levee, and the           |                     |               |                  |
|                            | interface between        |                     |               |                  |
|                            | levee and floodwall      |                     |               |                  |
|                            | where there is a         |                     |               |                  |
|                            | change in direction      |                     |               |                  |
|                            | warrant closer           |                     |               |                  |
|                            | analysis of velocities   |                     |               |                  |
|                            | and may require          |                     |               |                  |
|                            | additional protection.   |                     |               |                  |
| PFM-20: Debris build up at | Where Goodman Rd.        | Outline in O&M      | Amount of     | Potential for    |
| goodman road causing       | crosses horn lake        | manual that the     | constriction  | the waterline    |
| premature overtopping of   | creek there is a         | sponsor should      | needed to     | to catch debris, |
| the levee and floodwall    | potential for woody      | clear debris on a   | actually      | may need         |
|                            | debris to be trapped     | regular basis from  | increase the  | provisions in    |
|                            | under the bridge and     | the bridge opening  | frequency of  | the O&M          |
|                            | restrict flow. This flow | Goodman Rd.         | overtopping   | manual that      |
|                            | restriction may cause    |                     |               | the sponsor      |
|                            | the levee or floodwall   | If warranted,       | How much      | should clear     |
|                            | to be overtopped         | consider analyzing  | debris        | debris on a      |
|                            | sooner.                  | flow under the      | blockage is   | regular basis.   |
|                            |                          | bridge with some    | collecting    |                  |
|                            |                          | blockage            | under the     |                  |
|                            |                          |                     | bridge        |                  |

| Failure Modes                                                                                                           | Evaluations/factors                                                                                                                                                                                                                                                                                                                                                                                                                      | Mitigation                                                                                                                                                                                                                                                       | Uncertainties                                                          | Other                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                  |                                                                        | considerations                                                                                           |
| PFM-21: CLE through an<br>animal burrow leads to<br>breach                                                              | If animal control is not<br>performed, burrows could<br>lead to pathways for CLE<br>to develop.                                                                                                                                                                                                                                                                                                                                          | Ensure that the<br>O&M manual<br>accounts for animal<br>control plan and<br>the treatment of<br>animal burrows if<br>they are observed.                                                                                                                          | Unsure about<br>burrowing<br>animal<br>activity in the<br>area         |                                                                                                          |
| PFM-22: CLE through<br>the embankment due to<br>tree roots leads to<br>breach                                           | If trees are allowed to<br>grow in embankment, tree<br>roots may serve as<br>pathways for CLE to<br>develop.                                                                                                                                                                                                                                                                                                                             | Ensure that the<br>O&M manual<br>accounts for<br>vegetation control<br>plan.                                                                                                                                                                                     |                                                                        |                                                                                                          |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ensure that<br>vegetation is not<br>allowed to be<br>within the 15'<br>vegetation free<br>zone                                                                                                                                                                   |                                                                        |                                                                                                          |
| PFM-23: Tree collapse<br>or excessive vegetation<br>causes turbulence and<br>erosion of streambank<br>leading to breach | If a tree collapses or<br>vegetation is allowed to<br>grow in the embankment,<br>then it could create<br>turbulence that would<br>erode the embankment.                                                                                                                                                                                                                                                                                  | Ensure that the<br>O&M manual<br>accounts for<br>vegetation control<br>plan.                                                                                                                                                                                     |                                                                        |                                                                                                          |
| PFM-24: CLE along<br>waterline under<br>floodwall leads to<br>breach                                                    | Waterline is ~5-6' below<br>top bank, would not<br>expect to encounter it<br>within the floodwall<br>excavation of ~3-4'. If a<br>cutoff wall or other<br>seepage improvements<br>are needed, then we<br>would encounter the<br>waterline<br>With the waterline being<br>~5-6' below ground and<br>also under the parking lot,<br>probably less likely that<br>you would have CLE along<br>the line and a seepage exit<br>at the surface | Determine depth of<br>the waterline and<br>see if it will be<br>encountered in the<br>excavation. Special<br>treatment may be<br>needed to prevent<br>CLE along the<br>waterline.<br>Ensure that the<br>floodwall will not<br>negatively impact<br>the waterline | Unsure of<br>exact depth of<br>and backfill<br>around the<br>waterline | Expand on how<br>we address the<br>waterline<br>within<br>engineering<br>appendix of<br>the final report |

While none of the failure modes evaluated stood out as particularly "risk driving", these failure modes should and will be considered during design of the project and will be re-evaluated once the design is more substantial.

# 5. Typical Risks

A more rigorous risk assessment (e.g., Semi-Quantitative Risk Assessment, Quantitative Risk Assessment) will be completed during the Pre-Construction, Engineering and design phase of the study and has not been performed at this point. Having subsurface data and design at least at the 35-65% level would reduce the uncertainties to the point that the risk assessment may further inform what measures will be needed to ensure compliance with USACE Levee Safety guidelines, so that incremental risks are properly mitigated and managed as low as practicable.

# 6. Key Limitations

The limitation of the PFMA session and any risk analysis methodology is primarily driven by the availability and the completeness of the information used to assess the risk. With due regards for uncertainty at this point it is recommended that further design is conducted and that at least an SQRA session is completed between the 35-65% design level.

The methodology for the scaled down PFMA seems appropriate for this level of study. It identifies the potential for risks but cannot fully quantify the risk until more information is available on the design and existing conditions.

## 7. Conclusions

At the feasibility phase of the project, the screening level risk assessment did not identify any potential failure modes that would favor one alternative significantly over the other or that would lead to elimination of the PLAN 8 alternative. Additional information, including modeled life loss evaluations, subsurface investigations, and advancing design will allow for a more thorough and quantitative evaluation.